
Discovering Pattern Tableaux for Data Quality Analysis:
a Case Study

Lukasz Golab, Flip Korn and Divesh Srivastava
AT&T Labs - Research

180 Park Avenue, Florham Park, NJ, 07932, USA
{lgolab, flip, divesh}@research.att.com

ABSTRACT
In this paper, we present a case study that illustrates the utility of
pattern tableau discovery for data quality analysis. Given a user-
supplied integrity constraint, such as a boolean predicate expected
to be satisfied by every tuple, a functional dependency, or an inclu-
sion dependency, a pattern tableau is a concise summary of sub-
sets of the data that satisfy or fail the constraint. We describe
Data Auditor—our system for automatic tableau discovery from
data—and we give real-life examples of characterizing data quality
in a network monitoring database used by a large Internet Service
Provider.

1. INTRODUCTION
This paper presents a case study of pattern-tableau-driven data

quality analysis. Given a user-supplied constraint over one or more
relations, the goal of this type of analysis is to automatically gener-
ate a concise and easy-to-understand summary of tuples that satisfy
or fail the constraint (rather than simply listing all the satisfying and
violating tuples, which may not be easy to interpret by the user and
may not reveal any interesting patterns in the data). The produced
summaries, referred to as pattern tableaux, specify attribute values
that most (but not necessarily all) satisfying or violating tuples have
in common. We will motivate and describe various types of useful
constraints, give a brief overview of the Data Auditor tool for auto-
matic tableau generation from data [14], and show the utility of our
approach on a network monitoring database used by a large Internet
Service Provider (ISP).

While our approach is applicable to any type of data, this case
study focuses on monitoring databases, which maintain informa-
tion about computer systems such as IP networks, Web servers,
sensor networks, or cloud computing clusters. We illustrate a net-
work monitoring example in Figure 1. For the purposes of this
paper, a network consists of routers, each having at least one inter-
face, and links that connect pairs of interfaces. A network monitor-
ing database contains configuration tables that describe the devices
in the network and their properties (IP address, location, date of de-
ployment in the network, router type, model and operating system
version, link capacity, etc.). Configuration tables may change ev-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
the 9th International Workshop on Quality in Databases (QDB) 2011.
Copyright 2011.

Poller

Router
Network

CPU usage, memory usage, 
bandwidth usage, etc.

Link

Poller Poller

Poll
request Poll

response

Monitoring
Database

Data
Auditor

Figure 1: A network monitoring database.

ery day, as new equipment is added, existing equipment moved or
upgraded, and obsolete equipment turned off. Additionally, mea-
surement tables are associated with the equipment being moni-
tored, among them system logs, user trouble tickets, router CPU
and memory usage statistics, and bandwidth usage reports. Mea-
surement tables are updated (appended to) by a polling mechanism
that collects data from the network. In a large network, the polling
may be done by a set of distributed pollers.

Monitoring databases are prone to traditional data quality issues
such as data entry errors (e.g., incorrect specifications entered for
a new piece of equipment) and duplicates (e.g., different config-
uration entries for the same router). Additionally, malfunctioning
devices may generate incorrect measurements or fail to respond to
polls. In fact, even healthy devices may have incorrectly configured
firewalls that block incoming poll requests. The polling mechanism
and the network itself may also cause data quality problems: some
devices may not be polled or may be polled too often by multiple
pollers, poll requests and/or responses may be lost, etc. As a result,
measurement tables may suffer from incorrect, missing, duplicate
and delayed data.

Monitoring databases serve important business functions: trou-
bleshooting customer problems, analyzing equipment failures, de-



tecting malicious users, planning system upgrades, etc. In this pa-
per, we show that generating pattern tableaux for user-specified in-
tegrity constraints is a useful technique for understanding monitor-
ing data and characterizing its quality. We also show that tableau-
driven data quality analysis can help diagnose “process quality”
problems with the polling mechanism and problems with the net-
work itself.

The remainder of this paper is organized as follows. Section 2
describes the types of constraints supported by our Data Auditor
tool and the tableau generation algorithm. In Section 3, we demon-
strate the utility of tableau-driven data quality analysis on a network
monitoring database used by a large ISP. Section 4 discusses related
work and Section 5 concludes the paper.

2. OVERVIEW OF DATA AUDITOR

2.1 Supported Constraints
Data Auditor supports constraints of the form ∀t ∈ R, c → p.

In this paper, we will use the following SQL-like syntax to express
such constraints:

FOREACH t in R [WHERE c] ASSERT p

Here, t is a tuple, R is a relation, and c and p are predicates of
any form allowed in the SQL WHERE clause. In a data warehouse
setting, R may be a “base” table or a complex materialized view de-
fined over one more more tables (or other views). The “WHERE c”
part is optional.

For example, it is reasonable to assume that every CPU uti-
lization poll in the ROUTER_CPU measurement table must have
a value between zero and 100; violations may be caused by bugs in
the router operating system function that records CPU usage:

FOREACH t IN ROUTER_CPU
ASSERT t.cpu_util >= 0 AND t.cpu_util <= 100

Note that there is no WHERE clause in this constraint (and in other
examples in this section) since we want the ASSERT predicate to
hold on the entire ROUTER_CPU table.

We can also express Inclusion Dependencies. If the
router_id associated with every CPU poll in the ROUTER_CPU
table must exist in the ROUTERS configuration table, we write:

FOREACH t in ROUTER_CPU
ASSERT EXISTS (

SELECT *
FROM ROUTERS u
WHERE t.router_id = u.router_id )

Another useful constraint, particularly in monitoring databases,
defines temporal correlations across related events. Suppose that
table TICKETS stores customer trouble tickets, with ticket_id
being the primary key and timestamp being the ticket submis-
sion time, and table RESOLUTIONS contains a row for every
ticket_id that has been resolved with its timestamp denoting
the resolution time. The following constraint specifies that all trou-
ble tickets must be resolved within 24 hours:

FOREACH t in TICKETS
ASSERT EXISTS (
SELECT *
FROM RESOLUTIONS u
WHERE t.ticket_id = u.ticket_id
AND u.timestamp >= t.timestamp
AND u.timestamp - t.timestamp <= 24 )

Functional Dependencies (FDs) may also be expressed in our
framework. To assert that router model functionally determines
router manufacturer (model→ manufacturer) in the configu-
ration table ROUTERS, we write:

FOREACH t in ROUTERS
ASSERT NOT EXISTS (

SELECT *
FROM ROUTERS u
WHERE t.model = u.model
AND NOT (t.manufacturer = u.manufacturer))

2.2 Measuring the Confidence of a Constraint
We employ the notion of confidence to measure the extent to

which a given relation (or a subset of it) satisfies a constraint. We
define confidence as the fraction of rows of R (for which c is true)
that satisfy the assertion p. We can compute the numerator of this
quantity as

SELECT count(*) FROM R t WHERE c AND p

and the denominator as

SELECT count(*) FROM R t WHERE c

Other definitions of confidence, such as that used in [15] for FDs,
may also be expressed in Data Auditor, so long as the correspond-
ing SQL queries are provided.

The confidence of an integrity constraint may be thought of
as a metric to characterize data quality. For example, consider
the materialized view ROUTER_CPU_COUNTS illustrated in Ta-
ble 1, which maintains the number of CPU polls returned by each
router, uniquely identified by router name, in each five-minute
period. This view is the result of a complex aggregation query
(not shown) over ROUTER_CPU, which adds up the number of
records in ROUTER_CPU for each router in each possible five-
minute time bin, with a default aggregate value of zero for time
bins with no polls received. This ensures that there are records in
ROUTER_CPU_COUNTS for every 5-minute period throughout the
day. Suppose that each row also contains the location of the given
router. Suppose also that we require at least one poll from every
router every five minutes (even if multiple polls arrive in a single
5-minute interval, we still require a poll in the next 5-minute inter-
val). One way to measure the completeness of the CPU poll data is
via the confidence of the following constraint:

FOREACH t in ROUTER_CPU_COUNTS
ASSERT t.num_polls > 0

In our example from Table 1, the confidence of this constraint is
10
16

, which indicates that, on average, 62 percent of the expected
CPU polls (in terms of the five-minute time intervals with at least
one poll) are there and 38 percent are missing.

2.3 Pattern Tableaux
Real data, especially monitoring data collected from a diverse

system, are heterogeneous. In our network monitoring example,
routers from different locations may be missing different fractions
of polls, and any given router may behave differently over time.
Therefore, in addition to reporting the confidence on the entire re-
lation, it is useful to identify parts of the relation that satisfy the
constraint (i.e., have high confidence) and parts that violate it (i.e.,
have low confidence). The idea behind tableau-driven data quality
analysis (and Data Auditor) is to compactly summarize this valu-
able information.



Table 1: Example ROUTER CPU COUNTS table

name location time num polls
router1 New York 10:00 0
router2 New York 10:00 0
router3 Chicago 10:00 1
router4 Chicago 10:00 1
router1 New York 10:05 1
router2 New York 10:05 0
router3 Chicago 10:05 1
router4 Chicago 10:05 1
router1 New York 10:10 1
router2 New York 10:10 1
router3 Chicago 10:10 1
router4 Chicago 10:10 1
router1 New York 10:15 0
router2 New York 10:15 1
router3 Chicago 10:15 0
router4 Chicago 10:15 0

Following [9], we use pattern tableaux to encode subsets of a
relation. Consider a set A = a1, a2, . . . , a` of conditioning at-
tributes, chosen from amongst the attributes in the relation. A pat-
tern tableau consists of a set of patterns over A, each containing `
symbols, one for each conditioning attribute. Each symbol is either
a value in the corresponding attribute’s domain or a special “wild-
card” symbol ’-’. Let pi[aj ] denote the symbol corresponding to
the jth conditioning attribute of the ith pattern, and let t[aj ] be the
value of the jth attribute of a tuple t. A tuple t is said to match a
pattern pi if, for each aj in A, either pi[aj ] = ’-’ or t[aj ] = pi[aj ].
The confidence of a pattern pi is defined as the confidence of a
sub-relation containing only those tuples that match pi. Note that
the pattern consisting of only the ’-’ symbols matches the entire
relation.

The input to Data Auditor is a relation R (again, R could be a
complex materialized view), a constraint (of the supported type), a
set of conditioning attributes A (where A ⊆ R), a positive integer
k, and a fraction ĉ, which is either a lower or an upper bound on
the confidence of each tableau pattern on R. The output is a tableau
over A with at most k patterns, each of which has a confidence of
at least or at most ĉ, depending on the intended meaning of ĉ. As
in [15], we refer to the former as a hold tableau since it summa-
rizes subsets on which the constraint holds, and the latter as a fail
tableau, which detects subsets on which the constraint fails.

The tableau construction step uses a generalized version of the
on-demand algorithm from [15], which was originally proposed to
generate tableaux only for FDs. Data Auditor first pre-computes
the confidence and the number of matching tuples for each pattern
that contains no wildcards (which can then be used to compute the
confidence of patterns with wildcards). Each iteration of the algo-
rithm then inserts into the tableau a pattern that (meets the required
confidence threshold and) matches the most tuples that have not al-
ready been matched. This greedy heuristic attempts to produce the
smallest possible tableau (having the fewest patterns) that matches
the largest possible fraction of the relation. Thus, general patterns
with wildcards are more likely to be included (provided that they
have the appropriate confidence) than specific patterns that match a
small fraction of the data.

Recall the ROUTER_CPU_COUNTS relation from Table 1. Sup-
pose that A = {name, location, time}, ĉ is an upper

Table 2: Tableau for ROUTER CPU COUNTS

name location time conf. matches
- - 10:15 0.25 4
- New York 10:00 0 2

router2 - 10:05 0 1

bound of 0.25, and k = 5. Table 2 shows a fail tableau for the fol-
lowing constraint, along with the confidence of each pattern and the
number of tuples that match it (note the syntax for specifying the
conditioning attributes, confidence, and maximum tableau size):

FOREACH t IN ROUTER_CPU_COUNTS
ASSERT t.num_polls > 0
TABLEAU t.name, t.location, t.time
CONF <= 0.25
MAX SIZE 5

This tableau only has three rows, two shy of MAX SIZE. How-
ever, there are no more patterns with confidence under 0.25 that
match any tuples that have not already been matched, so the tableau
generation algorithm terminates early1. Note that this tableau sum-
marizes subsets of ROUTER_CPU_COUNTS that, on average, are
returning at most 25 percent of the polls (i.e., at least 75 percent of
the polls are missing). For example, the first pattern has a confi-
dence of 0.25 since it matches the four tuples with time=10:15,
of which only one has num_polls > 0. As a result, this fail
tableau is a useful tool for summarizing the “worst offenders” of a
constraint, and is easier to interpret than a (possibly very long) list
of all violations. In fact, one can generate several fail tableaux with
different CONF parameters to discover subsets with varying degrees
of violations. For instance, the last two patterns in Table 2 rep-
resent subsets that are missing every poll (the confidence is zero).
Additionally, by changing the CONF specification of the above con-
straint to, say, >= 0.9, the resulting hold tableau identifies “well
behaved” subsets that satisfy the constraint with high confidence.
For example, the pattern (- - 10:10) may be identified in such
a tableau, which has a confidence of one since no polls were miss-
ing at time 10:10. Also note that tableau patterns may overlap.

The choice of conditioning attributes is crucial to obtaining con-
cise and informative tableaux—some attributes may be irrelevant to
the constraint at hand. Fortunately, monitoring databases typically
contain timestamp fields, which often produce interesting patterns,
as well as attributes that naturally partition the devices being mon-
itored into groups, such as router type or location. In future work,
we plan to study automatic selection of conditioning attributes in
more detail, e.g., by exploiting attribute correlations.

So far, we have discussed tableaux containing patterns with con-
stants drawn from the attribute domains or the wildcard symbol ’-’.
Data Auditor also supports range tableaux [15], which, in addition
to constants and wildcards, contain patterns with ranges of values
of ordered attributes. Here, the definition of matching extends in
the obvious way—a tuple matches the pattern if the value of the
ordered attribute of the tuple falls within the range. Patterns with
ranges often lead to smaller tableaux since a single range pattern
may be used instead of separate patterns for different values in the
range. In Table 3, we show a tableau for the same constraint as
that in Table 2, whose second pattern includes a range on the time
attribute. Note that this tableau is smaller than Table 2; the last two
1Note that the tableau generation algorithm always terminates, ei-
ther after reaching the maximum tableau size bound, or when it
runs out of patterns that meet the confidence threshold.



Table 3: Tableau for ROUTER CPU COUNTS with a range
pattern

name location time conf. matches
- - 10:15 0.25 4
- New York 10:00 till 10:05 0.25 4

patterns from Table 2 are now captured by a single pattern in Ta-
ble 3. By default, Data Auditor considers patterns with ranges for
each ordered attribute in the conditioning attribute set.

3. CASE STUDIES
We now present examples of pattern-tableau-driven data qual-

ity analysis of a network monitoring database used by a large ISP.
This database is maintained using the DataDepot warehouse sys-
tem [12] and consists of a number of configuration tables, including
ROUTERS and INTERFACES. Each router has a name, IP address,
class (backbone router, customer router, etc.), location, etc. Each
interface resides on a particular router, and has a name, IP address,
function, capacity, etc. Measurement tables include ROUTER_CPU
(poll responses with average CPU utilization per router per five-
minute time period), ROUTER_MEMORY (likewise for average
memory utilization), and many more. We also maintain a number
of materialized views, among them ROUTER_CPU_COUNTS and
ROUTER_MEMORY_COUNTS, which, similar to Table 1, count the
number of polls returned by each router in each possible 5-minute
time interval. Again, these views are computed via complex aggre-
gation over the corresponding CPU and MEMORY base tables (in
DataDepot, we expressed these views using EMF-SQL [17], which
is an extension of SQL that supports complex grouping conditions).
In total, this network monitoring database contains over 300 tables
and materialized views, and ingests over 300 million new records
per day.

Due to the proprietary nature of the data, we have anonymized
the attribute values shown in the pattern tableaux in this section,
and we do not display the number of matching tuples per pattern.
Also, for brevity, we do not report any detailed performance results.
The running time of the first step (pre-computing the confidence of
patterns without wildcards) involves executing group-by aggrega-
tion queries on the tables involved in the constraint, and depends on
the sizes of these tables. The second step (execution of the tableau
generation algorithm) took on the order of one or two minutes at
most for each of the examples in this section, when executed on
our database application server.

3.1 Missing Polls
We begin by analyzing missing CPU data over a period of one

week using the following constraint (from now on, we omit the
MAX SIZE clause and display the first few rows of each tableau):

FOREACH t IN ROUTER_CPU_COUNTS
ASSERT t.num_polls > 0
TABLEAU t.name, t.class, t.hour_of_day, t.time
CONF <= 0.5

This constraint references the view ROUTER_CPU_COUNTS. That
is, we want to verify that we have received at least one poll per
router during each five-minute time interval of every day (rather
than, say, examining the ROUTER_CPU base table to see if it has
received at least 288 polls per router per day without investigating

Table 4: Tableau for missing CPU polls

name class hour of day time conf.
- vpn - - 0.33
- - - Sat 18:00 till

Sat 20:00 0.05
- backbone 17 till 20 - 0.3
- backbone - Sat 21:00 till

Sun 04:00 0

how the polls are spread out throughout the day). This is an im-
portant property to monitor because network analysts often need to
look up router CPU usage (or other measurements) during a par-
ticular point in time and correlate with other network events that
happened during this time; thus, we want the CPU polls to “cover”
every possible 5-minute time interval.

The conditioning attributes for this constraint are router name,
router class, hour_of_day (an integer between 0 and 23 cor-
responding to the hour of the time attribute), and time. Adding
hour of day to the conditioning attributes allows us to find daily re-
curring patterns in the missing data, if any. The confidence of this
constraint on the entire view ROUTER_CPU_COUNTS is 87 per-
cent (i.e., 13 percent of the polls are missing). The generated fail
tableau, shown in Table 4, identifies subsets with high data loss (at
least 50 percent). Note that both hour_of_day and time are
ordered and give rise to patterns with ranges.

This tableau identifies several interesting patterns that may be
presented to network technicians for further analysis. First, vpn
routers appear to be missing two thirds of the CPU polls. Second,
there appears to have been a problem on Saturday night that af-
fected all routers (perhaps there was a network outage or a problem
with the polling mechanism). Third, backbone routers seem to
be affected by missing polls every day between 5pm and 8pm, and
have not been polled at all (as indicated by the 0 percent confidence
of the last pattern) between 9pm on Saturday and 4am on Sunday.
Note that a concise pattern tableau is simpler to interpret than a list
of all violations of the given constraints.

Note that tableau-driven data quality analysis requires the user
to supply a constraint and is orthogonal to discovering all the con-
straints of a certain type that hold on a given table. In a large
database, it may not be feasible to search for all the possible con-
straints. Instead, our approach is to use human input and domain
knowledge in a constructive way. In the above example, with the
help of domain knowledge, we posed a constraint that describes
the completeness of the CPU measurement data. Given a particular
constraint, we then focused on searching for subsets of the given
view(s) in which this constraint is violated, which helped guide
further analysis of these data by domain experts.

3.2 Correlated Missing Polls
Having learned that CPU polls are missing from certain routers

at certain times of the day, we now hypothesize that missing CPU
measurements may be related to missing memory usage measure-
ments. Testing such a constraint (along with domain knowledge)
may help us understand the root cause of data loss. For instance,
if both CPU and memory polls were missing at a particular time,
then the router and/or the entire polling mechanism may have been
down. If only CPU or memory polls are missing, then the router
may be selectively ignoring some types of poll requests or the
polling mechanism may not be sending certain types of polls to
the database.



Table 5: Tableau for correlated missing polls

name class time conf.
- - Sat 18:00 till

Sat 20:00 0.95
- edge1 - 0.81
- edge2 - 0.91
- cust1 - 0.99

First, we test the constraint that if a CPU poll is missing in the
view ROUTER_CPU_COUNTS (i.e., num_polls = 0) for some
router during some 5-minute interval, then the corresponding mem-
ory poll in the view ROUTER_MEMORY_COUNTS should also be
missing. We use the same week’s worth of data as in the previous
experiment. Note the use of the WHERE clause to restrict the scope
of this constraint to missed CPU polls:

FOREACH t IN ROUTER_CPU_COUNTS
WHERE t.num_polls = 0
ASSERT EXISTS (

SELECT * FROM ROUTER_MEMORY_COUNTS u
WHERE t.name = u.name AND t.time = u.time
AND u.num_polls = 0 )

TABLEAU t.name, t.class, t.time
CONF >= 0.8

Since the confidence threshold is at least 0.8, the resulting hold
tableau denotes patterns where, on average, at least 80 percent of
the missing CPU polls are associated with a missing memory poll.
In this example, we no longer use hour_of_day as a condition-
ing attribute as it did not generate any interesting patterns.

The tableau is shown in Table 5. It includes the pattern

(- - Sat 18:00 till Sat 20:00)

as does the tableau in Table 4, suggesting that almost no polls of
any kind were collected in this time period. The other patterns
reveal that for several router classes, a dropped CPU poll usually
co-occurs with a dropped memory poll.

Note that the constraint used in this example is not a typical data
integrity constraint whose violations can be thought of as “dirty”
data. Instead, this is a data exploration constraint that specifies
some property of interest (i.e., correlated loss of CPU and memory
polls), whose tableau indicates which parts of the relation satisfy
the claimed property. Both data integrity and data exploration are
important components of data quality analysis.

Next, we test the “opposite” constraint, on the same portion of
data as before, which asserts that a missed CPU poll is not corre-
lated with a missed memory poll in the same 5-minute time win-
dow, i.e.,

FOREACH t IN ROUTER_CPU_COUNTS
WHERE t.num_polls = 0
ASSERT EXISTS (

SELECT * FROM ROUTER_MEMORY_COUNTS u
WHERE t.name = u.name AND t.time = u.time
AND u.num_polls > 0 )

TABLEAU t.name, t.class, t.time
CONF >= 0.8

The hold tableau is illustrated in Table 6. The first pattern suggests
that backbone routers do not respond to CPU polls, e.g., due to a
firmware bug that blocks CPU poll requests (but they do respond

Table 6: tableau for uncorrelated missing polls

name class time conf.
- backbone - 0.84
- - Sun 00:00 till Sun 03:00 0.82

Table 7: Tableau for duplicate memory polls

name class time conf.
newyork-r25 - Fri 17:00 till Fri 23:00 0.96
newyork-r31 - Fri 17:00 till Fri 23:00 0.96
chicago-r07 - Fri 17:00 till Fri 23:00 0.98

to memory polls). Also, it appears that the polling mechanism lost
CPU polls, but not memory polls, early Sunday morning.

For brevity, we omit the results of a similar set of experiments
that tests correlations between missing CPU and memory polls in
“the other direction”, i.e., checking the existence or absence of a
CPU poll given that the corresponding memory poll is missing. Fi-
nally, note that Tables 4, 5 and 6 suggest possible causes of missed
polls, which can then be verified and corrected by network engi-
neers.

3.3 Duplicate Polls
Missing measurement data is clearly an important data quality

problem. Duplicate or extraneous data are also of interest since re-
porting too many polls puts unnecessary overhead on the devices
being monitored and on the monitoring infrastructure. We now in-
vestigate extraneous memory polls, defined as occurrences of mul-
tiple polls from the same router in the same 5-minute time interval,
using the following constraint:

FOREACH t IN ROUTER_MEMORY_COUNTS
ASSERT t.num_polls <= 1
TABLEAU t.name, t.class, t.time
CONF <= 0.5

The fail tableau is shown in Table 7, using the same week’s
worth of data as in the previous experiments. It suggests that a
group of routers were continuously double-polled during a six-
hour window on Friday evening, perhaps due to a misconfigura-
tion of multiple distributed pollers that led to overlapping poller
coverage. However, not all routers were double-polled at that
time, only those listed in the tableau (otherwise the entire pattern
(- - Fri 17:00 till Fri 23:00) would appear in the
tableau).

We then hypothesized that perhaps there exist instances of dupli-
cate polls from other routers due to irregularly spaced polls. Such
instances would satisfy a constraint which asserts that time inter-
vals with double-polls are preceded or followed by time intervals
with zero polls from a given router (we omit the exact specification
of this constraint for brevity). However, we obtained empty hold
tableaux when we tested this constraint on several different weeks
of data from the ROUTER_MEMORY_COUNTS view. Clearly, data
quality exploration can involve testing hypotheses that may not be
true in the data.

3.4 Problems with Configuration Data
So far, defining missing and extraneous data was relatively

straightforward because we knew (or were able to find out from



Table 8: Tableau for missing interfaces

date class network conf.
01-26 - - 0
03-15 - - 0.08
04-01 - - 0.09

- bgp - 0
02-28 - Europe 0.25

domain experts) the expected polling frequency. We now analyze
a problem in which it is not possible to identify missing data in
one table without checking for the existence of a record in an-
other table. In particular, we want to verify the completeness of the
INTERFACES configuration table with the help of the ROUTERS
configuration table, using a six-month excerpt of these two tables.

We know that when a new router is deployed, it is inserted into
the ROUTERS table on the same day. Additionally, we hypothe-
size that at least one interface on this router must be added to the
INTERFACES table on the same day—clearly, a router must have
at least one active interface in order to route traffic. The corre-
sponding Data Auditor constraint is:

FOREACH t IN ROUTERS
ASSERT EXISTS (

SELECT * FROM INTERFACES u
WHERE t.router = u.router
AND t.date = u.date )

TABLEAU t.date, t.class, t.network
CONF <= 0.25

That is, if a router is added on a certain date, at least one of its inter-
faces must be added to the INTERFACES table with the same date.
The conditioning attributes are date, router class, and the network
to which the router belongs. Again, note that it is not possible to
detect missing interfaces using the INTERFACES table alone; we
must first check for new routers in the ROUTERS table.

The fail tableau is illustrated in Table 8. Note that a violation
here means that either the interfaces for the new router were never
added to the database, or they appear in the INTERFACES table,
but their dates are not the same as the date on which the router was
added (we can define a separate constraint to distinguish between
these two cases).

The first three patterns in Table 8 reveal specific dates where
nearly all the new routers that were added on those dates did not
have any interfaces added to the INTERFACES table (or these in-
terfaces have the wrong dates). According to the fourth pattern, all
bgp routers have this problem, and, according to the last pattern,
routers added to the Europe network on February 28 violate the
given constraint (but routers added to other networks on that day
do not since the pattern (02-28 - -) is not included).

In our final example, exploring the ROUTERS table using a func-
tional dependency plus a corresponding tableau reveals data quality
issues and interesting facts about the data. The FD we test asserts
that router class functionally determines router model:

FOREACH t in ROUTERS
ASSERT NOT EXISTS (

SELECT * FROM ROUTERS u
WHERE t.class = u.class
AND NOT (t.model = u.model) )

TABLEAU t.class
CONF >= 0.9

Table 9: Tableau for the FD class→ model

class conf.
class-5 1

Cisco super 5000 1
class-10 1

UNKNOWN 1

That is, we want to determine if there exist router classes for which
one particular router model is used exclusively (with high confi-
dence). We expect this constraint to be satisfied by only a few
classes, if any, since it would be unusual for a large network to
employ a single router model per class. The corresponding hold
tableau is shown in Table 9.

Consider the first and third patterns. It turns out that class-5
and class-10 are rare router classes that perform specialized
functions in the network and are manufactured by only one ven-
dor. On the other hand, the second and last patterns identify
data quality problems. The second pattern reveals that a new
router model, namely Cisco super 5000, has recently been
deployed and was erroneously assigned its own class, with the
same class name as the model name. The last pattern cap-
tures rows with incomplete information—it turns out that for
each row where class = UNKNOWN, it is also the case that
model = UNKNOWN and therefore the above FD is satisfied ex-
actly.

4. RELATED WORK
A great deal of work exists on data quality analysis and data

cleaning; see, e.g., [22] for a survey. Many systems have been
proposed in this area, including Ajax [11], Bellman [6] and Pot-
ter’s Wheel [23]. Data Auditor belongs to the class of constraint-
driven data quality systems, which also includes SEMANDAQ [8]
and StreamClean [18]. SEMANDAQ employs FDs and pattern
tableaux to analyze data quality. However, the focus of SEMAN-
DAQ is on identifying violating tuples and suggesting ways to “re-
pair” them. StreamClean proposes a constraint language similar to
Data Auditor’s, but requires each constraint to hold on the whole
relation and focuses on automatic error correction. To the best of
our knowledge, Data Auditor is the first system that automatically
discovers pattern tableaux to summarize satisfying and violating
subsets of the data.

Database integrity constraints have traditionally been used to en-
force schema quality. Recently, constraints have been proposed to
enforce data quality such as Conditional Functional Dependencies
(CFDs) [9], Conditional Inclusion Dependencies (CINDs) [2] and
Conditional Sequential Dependencies (CSDs) [13]. The key con-
cept behind these constraints is the notion of conditioning: rather
than requiring the constraint to hold over the entire relation, it need
only be satisfied over conditioned subsets of the data summarized
by a pattern tableau. This concept is also used in Data Auditor.

Many of the constraints used in this paper are closely related to
tuple-generating dependencies that assert the existence of certain
tuples if some property holds [7]. Here we use them with condi-
tioning to discover tableaux over which such constraints hold (with
high or low confidence). Also related are Probabilistic Approxi-
mate Constraints (PACs) [20], which were used to detect data qual-
ity problems in network traffic databases. For example, a PAC may
assert that the inbound and outbound traffic at the two endpoints of
a link should be (roughly) equal. However, PACs cannot express all
the constraints defined in this paper, especially those with EXISTS



and NOT EXISTS predicates in the ASSERT condition.
Finally, we point out the orthogonal problem of discovering

which integrity constraints of a certain type hold on a given relation
(in contrast to Data Auditor’s goal to discover a tableau for a known
constraint). Discovering FDs has been studied in [16, 19] discov-
ering CFDs in [3, 10, 24], and discovering Inclusion Dependencies
in [5, 21].

5. CONCLUSIONS
In this paper, we presented a case study of pattern-tableau-driven

data quality analysis using the Data Auditor tool. Using various
types of constraints that detect incorrect, missing and duplicate
data, we demonstrated the utility of our approach on a real-life net-
work monitoring database. The pattern tableaux that were gener-
ated in our analysis illustrate the extent, and can help determine the
root cause, of various types of data quality issues.

We are planning several directions for future work. First, in order
to improve efficiency of tableau-driven data quality analysis, we
want to study tableau discovery from a small sample of the data
(see, e.g., [4] for estimating the confidence of tableaux for FDs
from a sample). Second, we plan to extend the space of possible
tableau patterns to include conjunctions and negations, similar to
those supported by extended CFDs [1].

6. REFERENCES
[1] Loreto Bravo, Wenfei Fan, Floris Geerts, and Shuai Ma.

Increasing the Expressivity of Conditional Functional
Dependencies without Extra Complexity. ICDE 2008, pages
516-525.

[2] Loreto Bravo, Wenfei Fan, and Shuai Ma. Extending
dependencies with conditions. VLDB 2007, pages 243-254.

[3] Fei Chiang and Renee Miller. Discovering data quality rules.
PVLDB, 1(1):1166-1177, 2008.

[4] Graham Cormode, Lukasz Golab, Flip Korn, Andrew
McGregor, Divesh Srivastava, and Xi Zhang. Estimating the
confidence of conditional functional dependencies. SIGMOD
2009, pages 469-482.

[5] Olivier Cure. Conditional Inclusion Dependencies for Data
Cleansing: Discovery and Violation Detection Issues. QDB
2009

[6] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan and
Vladislav Shkapenyuk. Mining database structure; or, how to
build a data quality browser. SIGMOD 2002, pages 240-251.

[7] Ronald Fagin and Moshe Vardi. The theory of data
dependencies - an overview. ICALP 1984, pages 1-22.

[8] Wenfei Fan, Floris Geerts and Xibei Jia. Semandaq: A Data
Quality System Based on Conditional Functional
Dependencies. PVLDB, 1(2): 1460-1463, 2008.

[9] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios
Kementsietsidis. Conditional functional dependencies for

capturing data inconsistencies. TODS, 33(2):1-48, 2008.
[10] Wenfei Fan, Floris Geerts, Laks Lakshmanan and Ming

Xiong. Discovering conditional functional dependencies.
ICDE 2009, pages 1231-1234.

[11] Helena Galhardas, Daniela Florescu, Dennis Shasa, Eric
Simon and Cristian-Augustin Saita. Declarative data
cleaning: language, model, and algorithms. VLDB 2001,
pages 371-380.

[12] Lukasz Golab, Theodore Johnson, J. Spencer Seidel, and
Vladislav Shkapenyuk. Stream warehousing with DataDepot.
SIGMOD 2009, pages 847-854.

[13] Lukasz Golab, Howard Karloff, Flip Korn, Avishek Saha,
and Divesh Srivastava. Sequential dependencies. PVLDB
2(1): 574-585 (2009).

[14] Lukasz Golab, Howard Karloff, Flip Korn, and Divesh
Srivastava, Data Auditor: Exploring Data Quality and
Semantics using Pattern Tableaux. PVLDB 3(2): 1641-1644
(2010).

[15] Lukasz Golab, Howard Karloff, Flip Korn, Divesh
Srivastava, and Bei Yu. On generating near-optimal tableaux
for conditional functional dependencies. PVLDB,
1(1):376-390, 2008.

[16] Yka Huhtala, Juha Karkkainen, Pasi Porkka, and Hanu
Toivonen. TANE: An efficient algorithm for discovering
functional and approximate dependencies. The Computer
Journal, 42(2):100-111, 1999.

[17] Theodore Johnson and Damianos Chatziantoniou. Extending
complex ad-hoc OLAP. CIKM 1999, pages 170-179.

[18] Nodira Khoussainova, Magdalena Balazinska, and Dan
Suciu. Towards correcting input data errors probabilistically
using integrity constraints. MobiDE 2006, pages 43-50.

[19] Jyrki Kivinen and Heikki Mannila. Approximate inference of
functional dependencies from relations. Theoretical
Computer Science, 149(1):129-149, 1995.

[20] Flip Korn, S. Muthukrishnan, and Yunyue Zhu. Checks and
balances: Monitoring data quality problems in network
traffic databases. VLDB 2003, pages 536-547.

[21] Fabien De Marchi, Stephane Lopes, and Jean-Marc Petit.
Unary and n-ary inclusion dependency discovery in
relational databases. Journal of Intelligent Information
Systems, 32(1):53–73, 2009.

[22] Erhard Rahm and Hong Hai Do. Data cleaning: problems
and current approaches. IEEE Data Engineering Bulletin,
23(4): 3-13, 2000.

[23] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s
wheel: An interactive data cleaning system. VLDB 2001,
pages 381-390.

[24] Peter Z. Yeh and Colin. A. Puri. Discovering Conditional
Functional Dependencies to Detect Data Inconsistencies.
QDB 2010.


